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One collaborator reported using the determination True to indicate 

that the issue reported by the alert was a real problem in the code.

Another collaborator used True to indicate that something was 

wrong with the diagnosed code, even if the specific issue reported 

by the alert was a false positive!

What is truth?
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Solution: Lexicon And Rules

• We developed a lexicon and auditing rule set for our 

collaborators

• Includes a standard set of well-defined determinations for 

static analysis alerts

• Includes a set of auditing rules to help auditors make 

consistent decisions in commonly-encountered situations

Different auditors should make the same 

determination for a given alert!

Improve the quality and consistency of audit data for 

the purpose of building machine learning classifiers

Help organizations make better-informed decisions 

about bug-fixes, development, and future audits.
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Lexicon: Audit Determinations

Basic Determinations Supplemental Determinations

Audit 
Determinations

True False

Complex Dependant
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(default)
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Lexicon: Basic Determinations

True

• The code in question violates the condition indicated by 

the alert.

• A condition is a constraint or property of validity.

- E.g. A valid program should not deference NULL pointers.

• The condition can be determined from the definition of the 

alert itself, or from the coding taxonomy the alert 

corresponds to.

- CERT Secure Coding Rules

- CWEs
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Lexicon: Basic Determinations
True Example

char *build_array(size_t size, char first) {
if(size == 0) {

return NULL;
}

char *array = malloc(size * sizeof(char));
array[0] = first;
return array;

}

ALERT: Do not 
dereference 

NULL pointers!

Determination:
TRUE
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Lexicon: Basic Determinations

False

• The code in question does not violate the condition indicated 

by the alert.

char *build_array(int size, char first) {
if(size == 0) {

return NULL;
}

char *array = malloc(size * sizeof(char));
if(array == NULL) {

abort();
}
array[0] = first;
return array;

}
ALERT: Do not 

dereference 
NULL pointers!

Determination:
FALSE
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Lexicon: Basic Determinations

Complex

• The alert is too difficult to judge in a reasonable amount of 

time and effort

• “Reasonable” is defined by the individual organization.

Dependent

• The alert is related to a True alert that occurs earlier in the 

code.

• Intuition: fixing the first alert would implicitly fix the second one.

Unknown

• None of the above. This is the default determination.
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Lexicon: Basic Determinations
Dependent Example

char *build_array(size_t size, char first, char last) {
if(size == 0) {

return NULL;
}

char *array = malloc(size * sizeof(char));
array[0] = first;
array[size - 1] = last;
return array;

}

ALERT: Do not 
dereference 

NULL pointers!

Determination:
TRUE

ALERT: Do not 
dereference 

NULL pointers!

Determination:
DEPENDENT
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Lexicon: Supplemental Determinations

Dangerous Construct

• The alert refers to a piece of code that poses risk if it is not 
modified.

• Risk level is specified as High, Medium, or Low

• Independent of whether the alert is true or false!

Dead

• The code in question not reachable at runtime.

Inapplicable Environment

• The alert does not apply to the current environments where the 
software runs (OS, CPU, etc.)

• If a new environment were added in the future, the alert may 
apply.

Ignore

• The code in question does not require mitigation.
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Lexicon: Supplemental Determinations
Dangerous Construct Example

#define BUF_MAX 128

void create_file(const char *base_name) {
// Add the .txt extension!
char filename[BUF_MAX];
snprintf(filename, 128, "%s.txt", base_name);

// Create the file, etc...
}

ALERT: 
potential 

buffer overrun!

Determination:
False 

+ 
Dangerous 
Construct

Seems ok…but 
why not use 
BUF_MAX

instead of 128?
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Audit Rules

Goals

• Clarify ambiguous or complex auditing scenarios

• Establish assumptions auditors can make 

• Overall: help make audit determinations more consistent

We developed 12 rules

• Drew on our own experiences auditing code bases at CERT

• Trained 3 groups of engineers on the rules, and incorporated 

their feedback

• In the following slides, we will inspect three of the rules in more 

detail.
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Example Rule: Assume external inputs to the 
program are malicious

An auditor should assume that inputs to a program module (e.g. 

function parameters, command line arguments, etc.) may have 

arbitrary, potentially malicious, values.

• Unless they have a strong guarantee to the contrary

Example from recent history: Java Deserialization

• Suppose an alert is raised for a call to readObject, citing a 

violation of the CERT Secure Coding Rule SER12-J, Prevent 

deserialization of untrusted data

• An auditor can assume that external data passed to the 

readObject method may be malicious, and mark this alert as 

True

- Assuming there are no other mitigations in place in the code
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Audit Rules
External Inputs Example

import java.io.*;

class DeserializeExample {
public static Object deserialize(byte[] buffer)

throws Exception {
ByteArrayInputStream bais;
ObjectInputStream ois;
bais = new ByteArrayInputStream(buffer);
ois = new ObjectInputStream(bais);
return ois.readObject();

}
}

ALERT: Don’t 
deserialize 
untrusted 

data!

Without strong 
evidence to the 

contrary, assume 
the buffer could be 

malicious!

Determination:
TRUE
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Example Rule: Unless instructed otherwise, 
assume code must be portable.

When auditing alerts for a code base where the target 

platform is not specified, the auditor should err on the side 

of portability. 

If a diagnosed segment of code malfunctions on certain 

platforms, and in doing so violates a condition, this is 

suitable justification for marking the alert True.
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Audit Rules
Portability Example

int strcmp(const char *str1, const char *str2) {
while(*str1 == *str2) {

if(*str1 == '\0') {
return 0;

}
str1++;
str2++;

}

if(*str1 < *str2) {
return -1;

} else {
return 1;

}
}

ALERT: Cast to 
unsigned char 

before comparing!

This code would be safe on a 
platform where chars are unsigned, 

but that hasn’t been guaranteed!

Determination:
TRUE
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Example Rule: Handle an alert in unreachable 
code depending on whether it is exportable.

Certain code segments may be unreachable at runtime. Also 

called dead code.

A static analysis tool might not be able to realize this, and still 

mark alerts in code that cannot be executed. 

The Dead supplementary determination can be applied to these 

alerts. 

However, an auditor should take care when deciding if a piece of 

code is truly dead. 

In particular: just because a given program module (function, 

class) is not used does not mean it is dead. The module might be 

exported as a public interface, for use by another application.

This rule was developed as a result of a scenario encountered by 

one of our collaborators!
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Future Work

• Gather feedback on our lexicon and rules from surveys, focus 

groups, experts, etc.

• Continue to refine the lexicon/rules.

• Further develop CERT’s SCALe auditing framework to fully 

incorporate these concepts.

• Work with more collaborators to test the rules/lexicon in 

practice.

- We have some initial feedback from two collaborators, who used our 

rules to audit several hundred alerts from C and Java codebases
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